
Parametric Reconstruction

An intelligent point cloud registration algorithm based on feature extraction and matching generates the vectorized, lightweight, and editable parametric 3D model automatically.

One-stop Workflow

Various types of functions include multi-map registration, volume calculation, distance measurement, mileage statistics, track editing, and offline generation of mesh.

Application

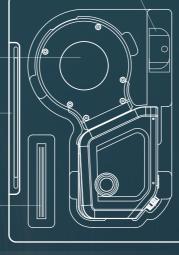
Topographic Mapping

Agriculture & Forestry Survey

Engineering Survey

Volume Calculation

Underground Space Mapping


Technical Specifications

Operation Range
Laser
Channels of Resolution
Accuracy
FOV
Points/s
Processing
Display
Carrier
Scanner Weight & Size
Camera
Operation Temperature
Battery Life
Single Scanning Time
Ingress Protection
Storage Capacity
Point Cloud Format
Power Supply
Power Consumption

Bracket* for Camera/ RTK Module

Lixel^{x1} Scanner

GCP Benchmark

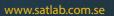
*Optional

Desktop Software Dongle

SATLAB

GEOSOLUTION I GÖTEBORG AB Jarnbrotts Prastvag 2 SE-42147 - Vastra Frolunda Gothenburg, Sweden info@satlab.com.se

Regional Offices: Warsaw, Poland Jičín, Czech Republic Ankara, Turkey Scottsdale, USA Singapore Hong Kong, China Dubai, UAE


0.05 - 120 m
Class 1 / 905 nm
16
<2 cm
360 x 270°
320,000
Real-time processing
Live streaming point cloud
Handheld / Backpack / UAV
<1.9 kg (with battery), 138×90×381 mm
Wide field×1, positioning×3
-20°C - 50°C
1.5 h
60 min
IP54
1T SSD
.las, .laz
V-mount 46.8 Wh, 14.4 V battery
<30 w

RTK Module* Handle Tripod

Type C Cable - Battery Charger Camera*

Battery x 2

23M229

Lixe^{x1} Handheld SLAM Scanner

LIXE^{X1} Handheld SLAM Scanner

Lightweight and highly integrated, the Lixel^{X1} real scene 3D reconstruction scanner powered by SatLab's next-generation SLAM technology allows you to obtain the colorized point cloud and generate accurate models directly.

The self-developed 3D real-time reconstruction algorithm of Lixel^{X1} supports real-time data preview, model building while capturing data, and export for direct use without post-process, driving the digital era with breakthrough technologies.

United Design and Minimal Operation

Lixel^{X1}'s integrated design of LiDAR, visible-light camera, motion camera, high-precision inertial navigation technology, and high performance computing eliminates the tedious operation steps and makes your scan easier and simple. And the complex structure is of excellent heat-sinking capability.

Real-time Solution Takes the Lead

The real-time data decoding allows exporting the available data immediately after scanning, which is time-saving and efficient. And in the mobile software, you can monitor the reconstruction effect in real time to ensure the data quality.

ng-term Continuous Operation

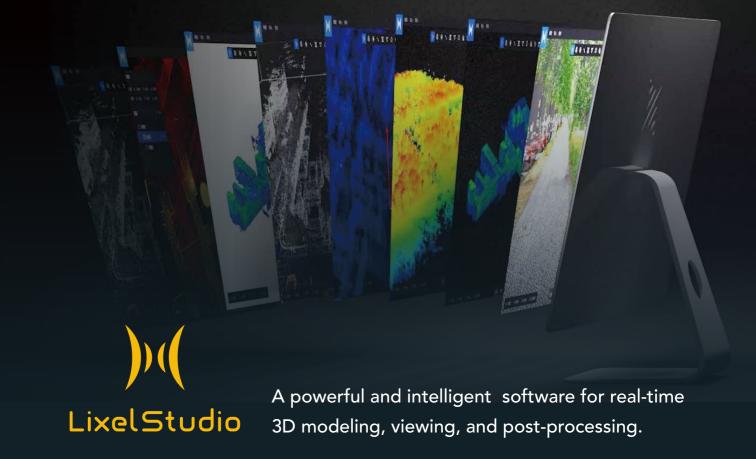
60 minutes of ultra-long continuous operation time and high capability in resuming the scanning from the break-point.

No need for segmented scanning in large scenes and greatly improves the efficiency of measurement and data analysis.

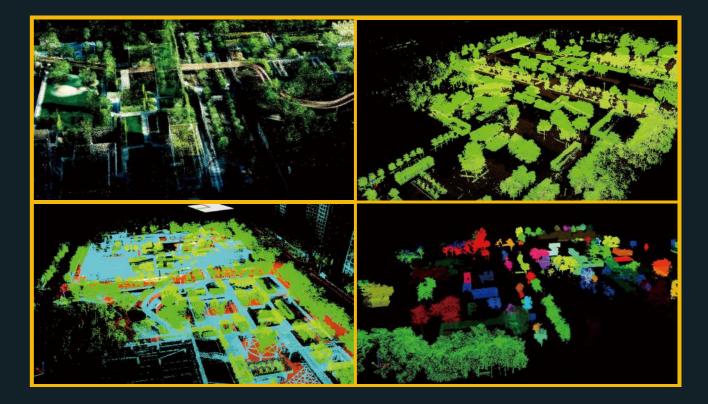
Real-time Color Rendering

High-precision vision and laser fusion technology generate true color point clouds in real-time to twin the real world.

ust and Reliable


With the industry-level of SLAM algorithm, the Lixe^{X1} is used to generate high-precision point clouds for complicated areas like long corridors, tunnels, etc., and largely improves the stability of mapping for weak texture scenes.

solution.



Moreover, the cumulative error of multi-source data can be reduced significantly by combining the software

• Everything is Monomer

Point cloud segmentation, semantic recognition, and editing of scenes and objects based on the deep learning of neural networks algorithm to perform sophisticated extraction of monomer.

